optimal algorithm - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

optimal algorithm - перевод на русский

ALGORITHM THAT IS AT MOST A CONSTANT FACTOR WORSE THAN THE BEST POSSIBLE ALGORITHM FOR LARGE INPUT SIZES
Asymptotic optimality; Asymptotically optimal; Asymptotically faster algorithm
Найдено результатов: 613
optimal algorithm      

математика

оптимальный алгоритм

asymptotic optimality         

математика

асимптотическая оптимальность

asymptotic optimality         
асимптотическая оптимальность
asymptotically optimal         
асимптотически оптимальный
optimal stopping problem         
CLASS OF MATHEMATICAL PROBLEMS CONCERNED WITH CHOOSING AN OPTIMAL TIME TO TAKE A PARTICULAR ACTION
Optimal Stopping; Optimal Stopping problem
задача об оптимальной остановке
asymptotically optimal         

математика

асимптотически оптимальный

optimal experiment         
EXPERIMENTAL DESIGN THAT IS OPTIMAL WITH RESPECT TO SOME STATISTICAL CRITERION
Optimum design; Optimum experiment; Optimal experiment; Optimum experimental designs; Model-oriented design of experiments; Optimal Design of Experiments; Alphabetic optimality; Optimal design of experiments; Optimal design of experiment; Optimum design of experiments; Optimum design of experiment; Optimal experimental design; Optimum experimental design; Optimal experimental designs; D-optimal design; E-optimal design; Optimal design model selection

математика

оптимальный эксперимент

optimal stopping         
CLASS OF MATHEMATICAL PROBLEMS CONCERNED WITH CHOOSING AN OPTIMAL TIME TO TAKE A PARTICULAR ACTION
Optimal Stopping; Optimal Stopping problem

математика

оптимальная остановка

algorithm         
  • Alan Turing's statue at [[Bletchley Park]]
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus
algorithm noun math. алгоритм algorithm validation - проверка правильности алгоритма
algorithmic method         
  • Alan Turing's statue at [[Bletchley Park]]
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus

математика

алгоритмический метод

Википедия

Asymptotically optimal algorithm

In computer science, an algorithm is said to be asymptotically optimal if, roughly speaking, for large inputs it performs at worst a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of big-O notation.

More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).

These proofs require an assumption of a particular model of computation, i.e., certain restrictions on operations allowable with the input data.

As a simple example, it's known that all comparison sorts require at least Ω(n log n) comparisons in the average and worst cases. Mergesort and heapsort are comparison sorts which perform O(n log n) comparisons, so they are asymptotically optimal in this sense.

If the input data have some a priori properties which can be exploited in construction of algorithms, in addition to comparisons, then asymptotically faster algorithms may be possible. For example, if it is known that the N objects are integers from the range [1, N], then they may be sorted O(N) time, e.g., by the bucket sort.

A consequence of an algorithm being asymptotically optimal is that, for large enough inputs, no algorithm can outperform it by more than a constant factor. For this reason, asymptotically optimal algorithms are often seen as the "end of the line" in research, the attaining of a result that cannot be dramatically improved upon. Conversely, if an algorithm is not asymptotically optimal, this implies that as the input grows in size, the algorithm performs increasingly worse than the best possible algorithm.

In practice it's useful to find algorithms that perform better, even if they do not enjoy any asymptotic advantage. New algorithms may also present advantages such as better performance on specific inputs, decreased use of resources, or being simpler to describe and implement. Thus asymptotically optimal algorithms are not always the "end of the line".

Although asymptotically optimal algorithms are important theoretical results, an asymptotically optimal algorithm might not be used in a number of practical situations:

  • It only outperforms more commonly used methods for n beyond the range of practical input sizes, such as inputs with more bits than could fit in any computer storage system.
  • It is too complex, so that the difficulty of comprehending and implementing it correctly outweighs its potential benefit in the range of input sizes under consideration.
  • The inputs encountered in practice fall into special cases that have more efficient algorithms or that heuristic algorithms with bad worst-case times can nevertheless solve efficiently.
  • On modern computers, hardware optimizations such as memory cache and parallel processing may be "broken" by an asymptotically optimal algorithm (assuming the analysis did not take these hardware optimizations into account). In this case, there could be sub-optimal algorithms that make better use of these features and outperform an optimal algorithm on realistic data.

An example of an asymptotically optimal algorithm not used in practice is Bernard Chazelle's linear-time algorithm for triangulation of a simple polygon. Another is the resizable array data structure published in "Resizable Arrays in Optimal Time and Space", which can index in constant time but on many machines carries a heavy practical penalty compared to ordinary array indexing.

Как переводится optimal algorithm на Русский язык